Ещё одно пояснение для гр. 620а.
Условия Коши-Римана позволяют восстановить дифференцируемую функцию
по её действительной или мнимой части, если известно её значение в какой-либо
точке. Например, решить такую задачу:
Восстановить функцию
по действительной части

Действительная часть функции
нам уже дана, и осталось найти
мнимую часть. Сделаем это, пользуясь тем, что части
и
функции
удовлетворяют условиям
![]() | (1) |
Зная
, получим

Интегрируя первое, получим общий вид
, который далее будем уточнять:

Подставим
во второе уравнение в (1)


Отныне у нас есть всё необходимое для сборки
:

Осталось определить
из значения функции в точке , указанного в условиях
задачи:

откуда окончательно


