Поверхностный интеграл 1-го рода функции $f(x,y,z)$ по параметрически заданной поверхности $\vec{r}(u,v)$ (где параметры у и в пробегают некую область $\Omega$) обозначается и вычисляется (через обычный двойной интеграл) так: \begin{equation} \iint\limits_{S}f(x,y,z)dS=\iint\limits_{S}f(x(u,v),y(u,v),z(u,v))\left|\vec{r}'_{u}\times\vec{r}'_{v}\right|dudv.\label{base} \end{equation} $\vec{r}'_{u}$ и $\vec{r}'_{v}$ – касательные векторы к поверхности, их векторное произведение $\vec{N}=\vec{r}'_{u}\times\vec{r}'_{v}$ - вектор нормали к поверхности, в интеграл включается его модуль $\left|\vec{r}'_{u}\times\vec{r}'_{v}\right|=\left|\vec{N}\right|$. Можно также считать, что в формуле \eqref{base} \[ dS=\left|\overrightarrow{dS}\right|=\left|\vec{r}'_{u}\times\vec{r}'_{v}dudv\right| \] (в интегралах 2-го рода модуль от $\overrightarrow{dS}$ брать не придётся).
Можно пересчитать выражение $\left|\vec{r}'_{u}\times\vec{r}'_{v}\right|$, воспользовавшись свойствами смешанного произведения и правилом ``БАЦ-ЦАБ'', так (здесь и далее все квадраты векторов – скалярные): \[ \left[\vec{r}'_{u}\times\vec{r}'_{v}\right]^{2}=\left[\vec{r}'_{u}\times\vec{r}'_{v}\right]\cdot\left[\vec{r}'_{u}\times\vec{r}'_{v}\right]=\left(\left[\vec{r}'_{u}\times\vec{r}'_{v}\right],\vec{r}'_{u},\vec{r}'_{v}\right)=\left(\vec{r}'_{u},\vec{r}'_{v},\left[\vec{r}'_{u}\times\vec{r}'_{v}\right]\right)= \] \[ =\vec{r}'_{u}\cdot\left[\vec{r}'_{v}\times\left[\vec{r}'_{u}\times\vec{r}'_{v}\right]\right]= \vec{r}'_{u}\cdot\left(\vec{r}'_{u}\left(\vec{r}'_{v}\cdot\vec{r}'_{v}\right)-\vec{r}'_{v}\left(\vec{r}'_{v}\cdot\vec{r}'_{u}\right)\right)= (\vec{r}'_{u})^{2} (\vec{r}'_{v})^{2} -\left(\vec{r}'_{v}\cdot\vec{r}'_{u}\right), \] \[ \left|\vec{r}'_{u}\times\vec{r}'_{v}\right|= \sqrt{\left[\vec{r}'_{u}\times\vec{r}'_{v}\right]^{2}}= \sqrt{(\vec{r}'_{u})^{2}(\vec{r}'_{v})^{2}-\left(\vec{r}'_{v}\cdot\vec{r}'_{u}\right)}, \] что (с точностью до обозначений) совпадает с формулой в Демидовиче.
Площадь поверхности равна интегралу 1-го рода по этой поверхности от единицы.