Processing math: 100%

Страница сетевой поддержки учеников Тимура Юрьевича Альпина

09.09.2024

Самостоятельное изучение по д/у для гр. 06-312

Дублирую план на оставшиеся консультации в формате <номер занятия>. <тема>

Мухарлямов — 1:

  1. Линейные уравнения первого порядка
  2. Уравнения в полных дифференциалах. Интегрирующий множитель
  3. Уравнения, не разрешённые относительно производной

Мухарлямов — n:
6,7. Уравнения, допускающие понижение порядка.

28.12.2023

Задания и материалы для дистанционного занятия гр. 06-212 в 8:30 в пт. 29.12.2023

Поверхностный интеграл 1-го рода функции f(x,y,z) по параметрически заданной поверхности r(u,v) (где параметры у и в пробегают некую область Ω) обозначается и вычисляется (через обычный двойной интеграл) так: Sf(x,y,z)dS=Sf(x(u,v),y(u,v),z(u,v))|ru×rv|dudv. ru и rv – касательные векторы к поверхности, их векторное произведение N=ru×rv - вектор нормали к поверхности, в интеграл включается его модуль |ru×rv|=|N|. Можно также считать, что в формуле (1) dS=|dS|=|ru×rvdudv| (в интегралах 2-го рода модуль от dS брать не придётся).

Можно пересчитать выражение |ru×rv|, воспользовавшись свойствами смешанного произведения и правилом ``БАЦ-ЦАБ'', так (здесь и далее все квадраты векторов – скалярные): [ru×rv]2=[ru×rv][ru×rv]=([ru×rv],ru,rv)=(ru,rv,[ru×rv])= =ru[rv×[ru×rv]]=ru(ru(rvrv)rv(rvru))=(ru)2(rv)2(rvru), |ru×rv|=[ru×rv]2=(ru)2(rv)2(rvru), что (с точностью до обозначений) совпадает с формулой в Демидовиче.

Площадь поверхности равна интегралу 1-го рода по этой поверхности от единицы.

(more…)

25.02.2023

Задания и материалы для дистанционного занятия по математике в сб. 25.02.2023 (Демидович, № 1877, 1893)

Изучая метод неопределённых коэффициентов, мы рассмотрели две разновидности множителей знаменателя: (xa) и (xa)k. Перейдём к третьему типу: (x2+ax+b). Таким множителям в разложении дроби соответствует слагаемое вида Ax+Bx2+ax+b.

(more…)

Задания и материалы для дистанционного занятия по мат. анализу в сб. 25.02.2023 (Демидович, № 2334, 2335)

Сначала -- прогрев на прошлую тему.

(more…)

05.11.2022

Здравствуйте, гр 06-112!

Начинайте выполнять вот эти инструкции и присылайте ваши вопросы.

Задания и материалы для дистанционного занятия гр. 06-261 в 12:10 в сб. 5.11.2022 (Демидович № 506, 514, 517, 530, 542)

Второй замечательный предел записывается так: limx(1+1x)x=limx0(1+x)1x=e,

(more…)

Задания и материалы для дистанционного занятия гр. 06-245 в 10:10 в сб. 5.11.2022 (Демидович № 435, 438, 459, 471, 472, 474.1, 474, 482)

Корни

Из теории мы знаем, что непрерывны (везде, где определены) функции тригонометрические, ex, lnx, xα, и как частный случай последнего – корни любых степеней. Последнее позволяет вносить предел под корень, если только подкоренное выражение имеет конечный предел.

(more…)

Задания и материалы для дистанционного занятия гр. 06-212 в 8:30 в сб. 5.11.2022 (Демидович № 1386, 1327)

Логично расширить идею разложения, которое использовалось при определении дифференциала: если у приращения функции можно выделить линейную часть по приращению аргумента, то почему нельзя выделить части, зависящие от приращения аргумента квадратично, кубично и так далее? Эта мысль воплощается в способе разложения функций, который называется формулой Тейлора. Согласно ей, вокруг точки x0 f(x)=nk=0ak(xx0)k+R, причём коэффициенты ak не зависят от x и вычисляются по формуле ak=f(k)(x0)k!; а R называется остаточным членом и оценивается разными способами.

(more…)

06.11.2021

Задания и материалы для дистанционного занятия гр. 06-012 в 8:30 в сб. 6.11.2021 (Даишев, Кузнецова № 8.1 п.6; № 8.2 п. 3,4; 8.5 п.3; 8.11 п.2)

Изолированная особая точка функции – это точка, в которой функция не аналитична, но в любой окресности этой точки (кроме самой точки) - аналитична. Чем нам будут полезны изолированные особые точки (далее я их буду называть просто особыми точками) и что мы будем с ними делать - зависит от их разновидности.

(more…)

02.11.2021

Задания и материалы для дистанционного занятия гр. 06-061 в 11:50 в вт. 2.11.2021 (Даишев, Кузнецова № 1.6 п.4, 2.11 п.4, 2.12 п.1)

Основы мы проходили в начале первого курса, так что начало объясню пунктирно.

(more…)

Older Posts »

Хостингом угостил Вадим "Moose" Калинников