11.05.2020
03.05.2020
26.04.2020
Задания и материалы для дистанционного занятия гр. 06-912 в 8:30 в пн. 27.04.2020, и гр. 06-922 в 11:50 в вт 28.04.2020 (Демидович № 3643, 3623)
![](http://shine.ylsoftware.com/wp-content/uploads/2020/04/dem3627_1-1024x713.png)
21.04.2020
Демидович, № 3514
20.04.2020
Демидович, № 3493
12.04.2020
Задания и материалы для дистанционного занятия гр. 06-912 в 8:30, пн. 13.04.2020 и гр. 06-922 в 11:50 вт. 14.04.2020 (Демидович № 3384, 3391, 3460)
Дифференцирование неявных функций для функций многих переменных делается во многом так же, как для функций одной: берётся уравнение, задающее функцию, и дифференцируется; полученное решается относительно производной. Разница в том, что в этот раз от частей уравнения берутся частные производные.
(more...)07.04.2020
Демидович, № 2439
04.04.2020
Задания и материалы для дистанционного занятия гр. 06-912 в 11:50, вт. 7.04.2020 и гр. 06-922 в 11:50 пн. 13.04.2020(Демидович № 3285, 3295)
Пусть $f$ -- функция многих переменных $f=f\left(y_{1},\dots,y_{n}\right)$, которые сами по себе зависят от переменных из другого набора $y_{k}=y_{k}\left(x_{1},\dots,x_{m}\right)$. Тогда частная производная $f$ по $x_{j}$ будет вычисляться по формуле \[ \frac{\partial f}{\partial y_{x_{j}}}=\sum_{k=1}^{n}\frac{\partial f}{\partial y_{k}}\frac{\partial y_{k}}{\partial x_{j}}. \]
(more...)03.04.2020
Задания и материалы для дистанционного занятия гр. 06-912 в 8:30 и гр. 06-922 в 11:50, пн. 6.04.2020 (Демидович № 3236, 3269)
Частной производной функции нескольких переменных по одной из этих переменных называется обычная производная, берущаяся в предположении, что все остальные переменные (кроме переменной дифференцирования) являются константами. (more...)