Разложим ряд на два, с $n < 0$ и $n\geqslant0$: \[ \sum_{n=-\infty}^{\infty}\frac{x^{n}}{2^{n^{2}}}=\sum_{n=-\infty}^{-1}\frac{x^{n}}{2^{n^{2}}}+\sum_{n=0}^{\infty}\frac{x^{n}}{2^{n^{2}}}. \]
25.05.2020
24.05.2020
Задания и материалы для дистанционного занятия гр. 06-922 в 11:50 в вт. 26.05.2020 и гр. 06-912 в 8:30 в пн. 1.06.2020 (Демидович № 2939)
Итак, мы на прошлом занятии раскладывали функцию $f\left(x\right)$ в ряд Фурье \[ f\left(x\right)=\sum_{n=0}^{\infty}\left(a_{n}\cos\frac{\pi nx}{l}+b_{n}\sin\frac{\pi nx}{l}\right), \] где \[ a_{n}=\frac{1}{l}\intop_{-l}^{l}f\left(x\right)\cos\frac{\pi nx}{l}dx,\qquad a_{0}=\frac{1}{2l}\intop_{-l}^{l}f\left(x\right)dx,\qquad b_{n}=\frac{1}{l}\intop_{-l}^{l}f\left(x\right)\sin\frac{\pi nx}{l}dx. \]
Задания и материалы для дистанционного занятия гр. 06-912 в 8:30 и гр. 06-922 в 11:50 в пн. 25.05.2020 (Демидович № 2944)
Начнём с простых вещей. Так как \[ \cos\alpha\cos\beta=\frac{1}{2}\left[\cos\left(\alpha+\beta\right)+\cos\left(\alpha-\beta\right)\right], \] для целых $k,n\geqslant0$
16.05.2020
Задания и материалы для дистанционного занятия гр. 06-922 в 11:50 пн. 18.05.2020 и гр. 06-912 в 11:50 в вт. 19.05.2020 (Демидович № 2813, 2822, 2853, 2854)
Степенной ряд
Частным случаем функциональных рядов являются степенные ряды. Степенным рядом называется ряд вида \[ \sum_{n=1}^{\infty}a_{n}\left(x-x_{0}\right)^{n}, \] где $a_{n}$ и $x_{0}$ – постоянные, не зависящие от $x$.
12.05.2020
11.05.2020
03.05.2020
26.04.2020
Задания и материалы для дистанционного занятия гр. 06-912 в 8:30 в пн. 27.04.2020, и гр. 06-922 в 11:50 в вт 28.04.2020 (Демидович № 3643, 3623)

