Страница сетевой поддержки учеников Тимура Юрьевича Альпина

15.10.2021

Демидович № 3863 (только область сходимости)

Filed under: мат. ан. сем. 3,пепел,Решения — Shine @ 4:09 пп

Найти область сходимости интеграла \begin{equation} \int\limits _{0}^{\infty}\frac{x^{p-1}\ln x}{1+x}dx.\label{int} \end{equation} Я понял: надо было брать мажорирующую функцию прямо вместе с логарифмом.

(more…)

07.12.2020

Задания и материалы для дистанционного занятия гр. 06-912 в 8:30 в пн. 7.12.2020 (Демидович № 4224, 4252)

Здравствуйте. Материал для освоения вот, я на связи жду вопросов. Д/з в честь прошедшей к/р не проверяется.

(more…)

23.11.2020

Демидович № 4022

Filed under: мат. ан. сем. 3,Решения — Shine @ 10:53 пп

Найти объём тела, ограниченного поверхностями ($a,b,c > 0$): \[ \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=-1,\qquad\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1. \]

(more…)

Демидович № 4009

Filed under: мат. ан. сем. 3,Решения — Shine @ 9:55 пп

Найти объём тела, ограниченного поверхностями: \[ z=x^{2}+y^{2},\quad y=x^{2},\quad y=1,\quad z=0. \]

(more…)

19.11.2020

Задания и материалы для дистанционного занятия гр. 06-912 в 10:10 в чт. 19.11.2020 (Демидович № 4103, 4108)

Объём тела равен интегралу от единицы по этому телу: \[ V=\iiint\limits_{V}1\cdot dxdydz \]

(more…)

17.11.2020

Демидович № 3992

Filed under: мат. ан. сем. 3,Решения — Shine @ 10:00 дп

Вводя обобщённые полярные координаты, найти площадь, ограниченную кривыми: \[ \frac{x^{3}}{a^{3}}+\frac{y^{3}}{b^{3}}=\frac{x^{2}}{h^{2}}+\frac{y^{2}}{k^{2}},\qquad x=0,\quad y=0. \]

(more…)

28.10.2020

Демидович № 3962

Filed under: мат. ан. сем. 3,Решения — Shine @ 11:32 пп

Произведя соответствующую замену переменных, свести двойной интеграл \[ \iint\limits _{\left|x\right|+\left|y\right|\leqslant1}f\left(x+y\right)dxdy \] к однократному.

(more…)

Демидович № 3957

Filed under: мат. ан. сем. 3,Решения — Shine @ 9:56 пп

В интеграле \[ \int\limits _{a}^{b}dx\int\limits _{\alpha x}^{\beta x}dyf\left(x,y\right),\qquad0 < a < b,\quad0 < \alpha < \beta, \] перейти к переменным: $u=x$, $v=y/x$ (обратно можно выразить $x=u$, $y=vx=uv$).

(more…)

Демидович № 3953

Filed under: мат. ан. сем. 3,Решения — Shine @ 8:42 пп

Переходя к полярным координатам, заменить двойной интеграл \[ \iint\limits _{x^{2}+y^{2}\leqslant x}f\left(\frac{y}{x}\right)dxdy \] однократным.

(more…)

27.10.2020

Демидович № 3944

Filed under: мат. ан. сем. 3,Решения — Shine @ 9:09 дп

Перейти к полярным координатам и расставить пределы интегрирования в том и в другом порядке в интеграле:

\[
\intop_{0}^{1}dx\intop_{1-x}^{\sqrt{1-x^{2}}}dyf\left(x,y\right)
\]

рис. 1

(more…)

« Newer PostsOlder Posts »

Хостингом угостил Вадим "Moose" Калинников